
Integrability of implicit differential equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys. A: Math. Gen. 28 149

(http://iopscience.iop.org/0305-4470/28/1/018)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 23:59

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/28/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys. A Math. Gen. 28 (1995) 149-163. Printed in the UK 

Integrability of implicit differential equations 

Giovanna Mendellat$, Giuseppe Marmoff and Wfodzimierz M TulczyjewiFj 
1 Dipartimento di Scienze Fisiche, Mostra d‘Oltremace, pad. 19, 80125 Napoli, Italy 
$ Istitnto Narionale di Fisica Nucleare, Sezione di Napoli, Italy 
§ Dipartimento di Matematica e Fisica, UniversitP di Camerino, 62032 Camerino (MC), Italy 

Received 21 March 1994 

Abstract. The problem of integrability of differential equations is discussed. Examples and 
integrability criteria are given. An algorithm for extracting the integrable part of an implicit 
differential equation is formulated. A procedure for generating a class o f  submanifolds of the 
wtangent bundle is defined. This procedure is then used for generating implicit differential 
equations in the phase space of a mechanical system. htegrabilihi criteria of such esuations are 
established and an extraction algorithm is formulated 

1. Introduction 

We propose to analyse the problem of integrability of consmined Hamiltonian systems [l] in 
terms of a representation of these systems as implicit differential equations. In our opinion, 
this approach offers greater conceptual clarity over the usual representation of constrained 
Hamiltonian systems as families of Hamiltonian vector fields. 

2. Preliminary definitions 121 

The fangent bundle of a differential manifold M of dimension m is a differential manifold 
TM of dimension 2m. The underlying set of TM is the set of equivalence classes of 
differentiable curves in M called vectors. Two curves y :  I + M and y‘: I’ + M are 
equivalent if 

and 

for each differentiable function f: M + R. We use the symbols Do and D’ to denote the 
zeroth and the first derivative of a function, respectively. The zeroth derivative of a function 
is the function itself. The sets I and I‘ are open neighbourhoods of 0 E R. The equivalence 
class of a curve y :  I -+ M is denoted by ty(0) .  The mapping 

ty:R + TM 
: S H  ty(s+.)(O, (3) 
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150 G Mendella et a1 

is called the tangent prolongation of the curve y .  The mapping 
ZM:TM + M 

:ty(O) H Y(0) (4) 
is called the tangent bundle projection. 

Let q: M + N be a differentiable mapping. The mapping 

To: T M  + T N  (5) 

Tv(ty(O)) = t(a 0 Y)(O) (6) 
defined by 

is called the tangent mapping of q. If q: M + N and 5 :  N + P are differentiable 
mappings, then 

T(( o q) =T( oTq. (7) 
A vector U E TM is said to be tangent to a set C c M if there is a representative 

y :  I M with Im(y) c C. The set of all vectors tangent to C is denoted by TC. 
We will study only first-order differential equations. Concepts of higher-order 

differential geometly, introduced below, are useful in the analysis of the integrability of 
such equations. 

The second tangent bundle of a differential manifold M of dimension m is a differential 
manifold f - M  of dimension 3m. The underlying set of T2M is the set of equivalence classes 
of differentiable curves in M. Two curves y :  I + M and y':  I' + M are equivalent if 

(8) 

(9) 

(10) 

Da(f 0 ~ " 9  = Do(f 0 Y)(O) 

D'(f 0 Y'W) = D'(f 0 Y X O )  

D2(f 0 ~ " 9  = D2(f 0 Y)@) 
and 

for each differentiable function f: M + B. The equivalence class of a curve y is denoted 
by t2y(0). The mapping 

t2y:Iw + T ~ M  
:s  H tZy(s + .)(O) (11) 

is called the second tangent prolongation of the curve y .  Two projections are defined by 
7 2 : ~ ~ ~  + TM 

:tZy(O) + ty(0) 

and 

r & : p M  + M 
: tZy(0) + y(0). (13) 

These projections are related by zM o ri2 
tangent bundle projection. 

d. The projection T& is called the second 

The second tangent bundle will be identified with the set 
T'M = [w E T M ;  TZM(W) = ZTM(IU)] .  (14) 

The third tangent bundle T3M is defined in a similar way. It is identified with the set 

T3M = (w E l T M ;  l T t ~ ( w )  = TrTM(w) = m ~ ( w ) } .  (15) 
It is now clear how higher-order tangent bundles can be defined. 
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3. Implicit differential equations 

Explicit differential equations have been treated extensively in mathematical literature. 
In contrast, the concept of an implicit differential equation has received little attention. 
It is barely mentioned in some texts of analysis and is absent from the literature on 
differential geometry. We are therefore constrained to begin our work with the statement and 
demonstration of elementary facts about implicit differential equations. Implicit differential 
equations of interest are those describing the dynamics of a mechanical system in its phase 
space P. Only the differential manifold structure of the phase space is used in the present 
section. 

An implicitfirst-order differential equation is a submanifold D of the tangent bundle 
T P  [3]. 

A curve y :  I + P is called a solution of a differential equation D C T P  i f  ty(s) E D 
for each s E I .  

An implicit differential equation is said to be explicit if it is the image of a differentiable 
vector field X :  U -+ T P  defined on an open submanifold U c P. 

An implicit differential equation D is said to be integrable at  U E D if there is a solution 
y :  I + P such that ty(0) = U. An implicit differential equation D is said to be integrable 
in Q subser S c R if it is integrable at each U E S. An implicit differential equation D is 
said to be integrable if it is integrable at each U E D. 

Symmetries and constants of motion are defined in an earlier paper [43. 
Integrability of explicit differential equations is well established. Implicit differential 

equations need not be integrable. 

Example I .  
differential equation 

Let P = Rz. The tangent bundle T P  is identified with R4. The implicit 

D = { ( x ,  y, i, y )  E T P ;  y = 0, X = 0, y = XI (16) 

is not integrable, except at (0. 0, 0, 0). The only solution of this equation is the constant 
curve 

y : R +  P 
: S H  (0,O). 

b p l e  2 .  Let P = R2. The implicit differential equation 

D = ( ( x .  y, X, j )  E T P ;  y = 0, i = 0, > 01 

has no solutions. 

Example 3.  Let P = R2. The implicit differential equation 

D = { ( x ,  y.1 ,  9 )  E T P ; x 2  + y 2 +  (X - 1 ) ' + j 2  1 )  

is not integrable at points in the set 

{ ( x ,  y , X ,  y )  E T P ; x 2  + y 2  = 1 , x  # 0 . 1  = I , y  =O}. 
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4. Integrability criteria for implicit differential equations 

Proposition 1. If D c T P  is integrable, then 

D c T ( l p ( D ) ) .  

Proof. We prove below a stronger criterion of integrability. 

Proposition 2. If D c TP is integrable, then 

D n U c T ( Z ~ ( D  n U)) 

for each open submanifold U c T P .  

Proof. Let U E D n,U and let y :  I --f P be a solution of D, such that ty(0) = U. The set 

r’ = (ty)-l(b(ty) n U )  (23) 

is an open neighbourhood of 0 E R and 

Im(ty Ir‘) = h ( t y )  n U c D n U. (24) 

It follows that 

I ~ ( Y  11’) c QP(D n U )  (25) 

and 

Im(tylI‘) c T(sp(DnU)) .  (26)  

0 Hence, U = ty(0) ~ T ( r p p ( D  n U)) .  

Proposition 3. If D c T P  is integrable, then 

D n u c l T p ( T ( D n  U )  n T 2 P )  (27) 

for each open submanifold U c T P .  

Proof. Let U E D n U and let y :  I + P be a solution of D, such that ty (0)  = U. The set 

I?= (ty)-l(Im(ty) n U) = (ty)-l(u} (28) 

is an open neighbourbood of 0 E PE and 

ImftylI’) = Im(ty) n U c D n U. (29) 

It foIlows that 

Im(tzyir’) c T(D n U )  n T 2 P .  (30) 

Hence, U = ty(0) = q p ( t 2 y ( 0 ) )  E w p ( T ( D  n U )  npP). 0 
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Proposition 4. If D c T P  is integrable, then 

 nu c r ~ p ( m ~ ( l T ( D n u ) n T ~ P ) )  (31) 

for each open submanifold U c T P .  

Proof. The proof is similar to that of proposition 3. U 

It is obvious that propositions 3 and 4 represent the beginning of an infinite sequence 
of necessary integrability conditions. 

Proposition 5. If C = r p  ( D )  is a submanifold of P and if the mapping 

r : D + C  
:U * r.D(v) 

is a surjective submersion, then the condition D c TC is sufficient for integrability of the 
implicit differential equation D c T P .  

Proof. Let U be an element of D and let x = rp(u). Let u:C -+ D be a (local) 
section of r: D +. C such that o ( x )  = U. If E :  D + ~ T C  is the canonical injection, 
then X = 6 o U :  C + TC is a section of rc: TC + C and, hence, a vector field on C .  
Let y : I  + C be an integral curve of X such that y(0) = x. Then Im(ty) c D and 
ty(0) = X ( x )  = U. 0 

5. Examples 

Examples of implicit differential equations in this section have been selected to demonstrate 
the insufficiency of the integrability criteria, with the exception of proposition 4. 

Example 4.  Let P = R and let T P  be identified with Rz. The implicit differential equation 

D = ( ( x , i )  E T P ;  (i -a)’ = x) (33) 

is not integrable at (x, i )  = (0, a) if a # 0. The criterion of proposition 1 fails at this 
point. If a = 0, then 

y : R +  P 
: S H  1+s+;s* (34) 

is a solution of D and D = Im(ty). It follows that D is integrable. 

Example 5. Let P = R. The implicit differential equation 

D = [ (x, i )  E T P ;  (x - a)3 = x} 

is the image of the section 

X : P + T P  
:x H ( x , x ” 3 + a ) .  

(35) 
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Since X is not differentiable at x = 0, differential equation D is implicit in an essential 
way. If a = 0, then 

y,:R+ P 

: s H o  (37) 

yz: IO, CO[+ p 

(38) 312 :s H (is) 
and 

M :  IO, d+ p 
(39) 

are solutions of D and D = Im(ty1) U Im(tn) U Im(tn). If a # 0, then D is not integrable 
at ( x ,  i )  = (0, a) .  (Propositions 1 and 2 are satisfied, proposition 3 is not.) 

Example 6. Let P = R and let T P  be identified with Rz. The implicit differential equation 

2 312 :s H - (p) 

D = { ( x ,  a)  E T P ; f 3  - 3 i  = 2 ~ )  (40) 
is not integrable at ( x ,  x) = (1, -1) or ( x ,  x) = (-1,l). (Proposition 1 is satisfied, 
proposition 2 is not.) 

Example 7. Let P = Rz. The tangent bundle T P  is identified with R4. The implicit 
differential equation 

D = I ( ~ ,  y,i, y) E T P ;  (a - 113 = - + y2, i = y1 (41) 
is not integrable at ( x ,  y. i ,  y) = (0, 0 , l . l ) .  (Propositions 1-3 are satisfied, proposition 4 
is not.) 

6. Extracting the integrable part of an implicit differential equation 

Proposition 5 suggests a method for extracting the integrable part of an implicit differential 
equation if certain rather strong regularity conditions are satisfied. 

Let D be an implicit differential equation in P. let C be the projection rp (D)  and let 
t: D -+ C be the mapping induced by the restricion of 5.0 to D. We construct a sequence 
of objects 

(DO, CO, zo), ( D ' ,  C', d ) ,  . .. , (Dk ,  C', rk), . . . (42) 
where 

Do = D co=c 50 = 5 (43) 

Ck = rp (Dk)  (44) Dk = Dk-1 n TCk-1 

and s ~ :  Dk --f Ck is the projection induced by the restriction of zp to Dk. For each k, 
it is assumed that the sets Ck are submanifolds and that the mappings tk are surjective 
submersions. Since the dimension of P is finite, the sequence of implicit differential 
equations 

(45) Do, D ' ,  ... , D',. .. 
is constant, starting with some index k = m. The integrable implicit differential equation 
Dm c T P  is the integrable part (possibly empty) of D. 
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Let ? = R4. The tangent bundle TF is identified with JRs. Let H be a Example 8. 
differentiable function 

H:R2-+R 
: ( x ,  P )  ++ H ( x  > P )  (46) 

of two real variables. The implicit differential equation 

- 

(47) 

aH ( x , p , r , s , x , p , E , i )  E T P ; r  = p , s  = O , E  = - - ( x , p ) , S  =i  - 
ax 

is not integrable. We have 

BO = 6 (48) 

CO = { ( x ,  p ,  r,  s) E P; r = p ,  s = 0) 

T C 0 =  [ ( x , p , r , s , i , p , ? , S )  E T P ; r  = p , s  = 0 , i  =d ,s  =0) (50) 

(49) 

aH 
ax ( x , p 7 r , s , x l p 9 i t i )  E T P ; r = p , s = O , i . = p = - - - ( x , p ) ,  

I . a~ 
S = O , x = - ( x , p )  

aP 

(52) 
p = CO 

and 

(53) D -  - m  - 61 

for m > 1. Regularity conditions are satisfied. The implicit differential equation 5' is the 
integrable part of 5. Let P = Rz and let U be the embedding 

u : P +  P 
: ( x ,  P )  H (x, P. P ,  0). (54) 

Then, to = Im(o) and 6' =Tup), where 

is the image of the vector field 

X P + . T P  
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&ample 9. [S] Let P = Et4 and let the tangent bundle T P  be identified with Ets. The 
implicit differential equation 
D = ( ( x ,  y, p ,  4, X, j ,  p ,  4 )  E T P ;  x2 + Y 2  Z 0, p = k[ (xz  + Y 2 ) x  - ( x i  + YY)xl. 

4 = ~ [ ( x ~ + y ~ ) 3 - ( x x + y y ~ y l , p = k I ~ X ~ + y ~ ~ x - ( x x + Y j i ~ i l ,  

q = k[(XZ + YZ)Y - (xX + Y Y ) j l ]  (57) 

Do = D (58) 

(59) 
T C o = { ( ~ , y , p , ~ , i , ) i , ~ , ~ ) E T P ~ ~ 2 + ~ 2 # O , ~ p + y ~ = O , ~ P + ~ ~ + L 4 + Y ~ = ~ I  

(60) 

is not integrable. We have 

CO = { ( x ,  y, p ,  4) E P ;  xz + Y 2  # 0 , x p  + Y4 = 0) 

D' = Do n T C o  = ( ( x ,  Y, p ,  4, X, 9, p ,  4) E T P ;  x2 + Y 2  # 0, 
(61) 

(62) 

(63) 

(64) 

p = 0, p = 0, 4 = 0,q = 0, xy = x i ]  

c' = { ( x ,  y ,  p .  4)  E P ;  x2 + YZ # 0, P = 03 4 = 01 

TC' = [ ( x ,  y ,  p,q,i, j ,  p , q )  E T P : x 2 + y 2  # 0, p = O , p  =O,q  = 0,q = 0) 
and 

D2 = DL n TC' = D'.  
The implicit differential equation D' is the integrable part of D. Solutions of Dl are curves 

y : R +  P 
: t H (af( t ) ,  bf ( t )> 0,O) (65) 

where a and b are numbers and f is a differentiable function such that 

( a f ( t ) Y  + (bf(t)Y # 0. 

7. Affine subbundles of T " P  

The symplectic structure of the phase space of a mechanical system makes it possible to 
generate implicit differential equations from simpler objects. A constrained Hamiltonian 
system is generated by a function defined on the constraint submanifold. A Dirac system 
modified by the extraction algorithm is no longer generated in such a simple manner. Hence, 
we find it necessary to generalize the generation mechanism in order to be able to generate 
a class of implicit differential equations which includes Duac systems as well as systems 
obtained by applying the extraction algorithm. We observe that the generation of a Dirac 
system from the Hamiltonian function can be viewed as being composed of two operations. 
First, a Lagrangian submanifold of the cotangent bundle of the phase space is generated 
and then it is transferred to the tangent bundle with the help of the natural isomorphism of 
these bundles. We describe a generalization of the first phase of the generation mechanism. 
The symplectic structure of the phase space is not used. 

Let P be the phase space of a mechanical system. Let C be a submanifold of P and 
let K be a vector subbundle of the bundle T c P .  The polar 

K" = {f E T*P;  p = np(f) E C, (U. f) = 0 for each U E K p ]  (66) 

is a vector subbundle of the bundle TZP.  Let v:  C + K* be a differentiable section of the 
bundle K'. 
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Proposition 6. The set 

~N = {f E T*P; p = xp(f) E C, ( U ,  f) = (U, q )  for each U E K,,) (67) 

is an affine subbundle of the vector bundle T$P, modelled on the vector subbundle KO. 

Proof. For each po E C, there is a neighbourhood U of po in C and a local linear 
trivialization q:T;P + iRm of the bundle T:P, such that for each p E U 

K; = (f E T;P; y,(f) = 0 for p = k +  1,. .. , k + m }  (68) 

where the coordinates y,: T; P + iR are the compositions pi-, o q of q with the canonical 
projections pr,:Rm + R. For each po E C, there is a neighbourhood U of po in C and a 
differentiable section @:U + T;P of the bundle TLP, such that (U .  ij) = (U, 9) for each 
U E KU. Let U be a neighbourhood of PO such that both the trivialization q and the section 
i j  exist. The mapping 

q':T;P + R" 
: f - v(f - @(XP(f))) (69) 

is a local affine hivialization of the bundle T:P, such that for each p E U 

Np = {f E T P ;  $(f) = y,(f - @(xp(f))) = 0 for p = k + 1,. . . , k +m). 

f' - f E K;. Hence, KO is the model bundle for N .  

(70) 

It follows that N is an affine subbundle of T;P. If f and f' are elements of Np,  then 
0 

The set N in the above proposition is said to be generated by the triple (C, K, q). 

8. Integrability of implicit differential equations~in a sympledic phase space 

Let (P, o) be the symplectic phase space of a mechanical system and let @:TP + T*P be 
the natural isomorphism provided by the symplectic shxcture. Let V c TpP be a vector 
subspace. We denote by V Q  the symplectic polar 

@-'(V") = {w E TpP; (U A w ,  U )  = 0 for each U E VI. (71) 

Let C be a submanifold of P. let K be a vector subbundle of the bundle TcP and 
let q: C -+ K' be a differentiable section of the fibration A: K" + C. The inverse image 
@-'(N) of the set N ,  defined by (67), is the implicit differential equation 

D = (U, E T P ;  p = rp(w) E C, (U A w ,  o} = (U, v }  for each U E K,,]. 

KQ = @-'(KO). 

D = (w E T P ;  p = rp(w) E C, (U A w, U )  = (U,  dH) for each U E T,,CJ 

(72) 

The set D is an affine subbundle of the vector bundle TcP, modelled on the subbundle 

A Dirac system 

(73) 
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is a special case of (72), obtained by setting K = TC and rp = dH, where H: C -+ 1 is 
the Hamiltonian function. The pair (C, H) represents the Dirac system (73). 

The integrability condition D c TC is satisfied if, and only if, the condition D,, c T,,C 
is satisfied for each p E C. The set 

D,, = [w E T,P; (U A w ,  w )  = (U. a) for each U E K,,] (74) 

is an affine subspace of T, P modelled on the vector subspace 

(75) { W  ET,,P; (U A W , O )  =Ofor each U E K,] = K,. q 

For the space T,,C, we use the representation 

T,C = (TJC)a 

= { w  E TpP; (U A w ,  w )  = 0 for each U E TZC}. 

We denote by kerp(p) the space 

{U E T,P; U E K,, ( U ,  rp) = O}, 

Proposition 7. 

Pmof. Let w E D,. From (74), we have 

( U  A w ,  0) = (U, rp) 

If T IC  C kerp(p), then D,, c T,,C. 

for each U E K,,. If TJC C kerrp(p), then it follows that 

(U A w , w )  = 0 

for each U E TIC. Hence, w E (T1C)Y = T,C, 

Lemma 1. If the intersection D, f l  T,C is not empty, then K,, n TIC c ker(o(p). 

(76) 

(77) 

(79) 

n 

Proof. Let D,  n T,C be not empty and let w E D, nT,C. If U E K,, nTzC, then 

(U A w ,  0) = (U. rp) (80) 

from (74), and 

(U A w , w )  = 0 (81) 

from (76). Hence, (U, rp) = 0. 

Proposition 8. If D, c T,C, then T2C c kerrp(p). 

0 

Proof. Let U E KJ. If w E D,,, then w + U E D,,. If D, c T,C, then it follows 
that w E T,C and w + U E T,C. Hence, U E T,C. We have established the inclusion 
K: c TpC equivalent to K,, c TIC. If D,, c T,,C, then the intersection D,, n T,C is not 
empty. If U E T?C, then U E K,,. From lemma 1, it follows that U E kerrp(p). Hence, 
TJC c kerf&). 0 
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The following corollary summarizes the results obtained so far. 

Corollary I. The implicit differential equation 

D = {w E TP;  p = zp(w)  E C, ( U  A w ,  o) = (U. rp) for each U E K,) (82) 

is integrable if, and only if, T IC  c kerrp(p) for each p E C. 

For the special case of a Dirac system, we obtain the following known theorem. 

Theorem 1. A Dirac system 

D = (w E TP; p = ~ ( w )  E C, (U A w ,  o) = (U. dH) for each U E T,C} (83) 

is integrable if, and only if, the submanifold C C P is co-isotropic and the Hamiltonian 
function H: C + E% is constant on leaves of the characteristic foliation of C. 

We recall that a submanifold C c P is said to be co-isotropic if T fC  c TC. The 
set T fC  is called the charucteristic distribution of a co-isotropic submanifold C c P .  
The characteristic distribution is Frobenius integrable. Its integral foliation is called the 
characteristic foliation of C. In Dirac’s terminology, a co-isotropic submanifold of the 
phase space is a first-class constraint. A submanifold C c P is called a second-class 
constraint if the symplectic form o, restricted to C, is non-degenerate. For an intrinsic 
definition of the class of a submanifold of a symplectic manifold, see 161. 

9. Extracting the integrable part of a Dirac system 

Proposirion 9. For the set D of formula (72), we have 

- c , ( D n T c ) c { p ~ P ;  p ~ C , K , n T 2 C c k e r r p ( p ) } .  (84) 

Proof. If p E zp(D n TC), then p E C and the intersection LIP n TpC is not empty. It 
0 

We denote the set { p  E P ;  p E C, K p  n TIC c kerq(p)] by C’. We define the set 

follows from lemma 1 that K,, n T2C c kerrp(p). 

K‘ = Up,c,KA: where KA = K,, + TIC, and the mapping rp’: C’ -+ K‘*, characterized by 

Proposition IO. If p E C’, then 

D , ~ T , C = ( w ~ T , , P ; ( u ~ w , o ) = ( u , r p ’ )  foreachuEKb]. (86) 
Proof. Let p E C’. It follows from (74) and (76) that w E D, n T,C if, and only if, 

i f u E K p  

if U E T~C. 
( U A W , W ) =  

From the definition of (0‘. it follows that (87) is equivalent to 

(U A w ,  o) = (4 P) 

for each U E K,, +TIC = KL. 
(88) 

13 
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Proposition 11. For the set D of formula (72), we have 

+.(D n T C )  3 C' = [ p  E P; p E C, K,, n T q C  c ker(o(p)}. (89) 

Proof. If p E C', then it follows from proposition 10 that Dp nT,C is not empty. Hence, 
p ~ ~ p ( D n T c ) .  0 

We have obtained the representation 

D' = [ w  E T P ;  p = r p ( w )  E C', (U A w ,  w )  = (U, rp') for each U E KL} (90) 

for the set D' = D n T C .  This representation is the basis of the extraction algorithm for a 
Dirac system. 

We start with a Dirac system D c T P  generated by a Hamiltonian function H: C + Iw 
defined on a submanifold C c P .  We introduce a sequence of objects 

(CO. KO, PO), (C', K ' ,  V I ) ,  . . . , (d,  K', rpk), . . . (91) 

where 

C o = C  K o = K  y o = 9  (92) 

(93) 

(94) 

Ck = ( p  E P ;  p E Ck-', K;-' nT;C'-' c kerrp'-'(p)} 

KK = U,,,ct(Ki-' + TZC'-l) 

and rp' is characterized by 

It is assumed that sets Ck are submanifolds of P and Kk are subbundles of TcxP. Since 
the dimension of P is finite, sequence (91) is constant, starting with some index k = m.  
The integrable implicit equation D", generated by (C", Km, rp"), is the integrable part of 
the original Dirac system. 

Example I O .  Let the space 
symplectic form o defined by 

( ( x ,  p ,  r, s ,  X, p, i-, S) A ( x ,  p ,  r, s, S x ,  Sp, Sr, Ss), w )  = J6x + SSP - f 8 r  - pas. 

The implicit differential equation (47) is a Dirac system (c, g )  with 

= Iw4 of example 8 be given a symplectic structure with the 

(96) 

E = { ( x ,  p, r , s )  E P; r = p .  s =0) (97) 

and 
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The set c is a second-class constraint. 
The extraction algorithm starts with 

CO 

KO = TCO - 
= ( ( x ,  p ,  r .  s, Sx, Sp, Sr, 8s) E T P ;  r = p ,  s = 0, Sr = Sp, Ss = 0) (1W 

and 

(0': CO --z K w  (101) 

characterized by 

au aH 
ax aP 

((x, p ,  r , s ,  SX, Sp, Sr. as), rpo) = - S X  + -8p. 

The set TqCo is the set of all ( x ,  p ,  r ,  s, Sr, Sp, Sr, 8s) E TF, such that r = p ,  s = 0 
and 

i.Sx + SSp - i S r  - pSs = 0 (103) 

for all ( x ,  p ,  r, s, i ,  p, i., i) E TCO. It follows that 

TnCo = ( ( x ,  p ,  r ,  s ,  Sx, Sp, Sr, 8s) E T P ;  r = p , ~ s  = 0, Ss - Sx = 0, Sr = 0) .  (104) 

The set KO r l  TTC' contains only zero vectors. This confirms the observation that ? is a 
second-class constraint. The condition 

is trivially satisfied for all points ( x ,  p ,  r, s )  E Co. Hence, C' = Co. The set 

0 ll K' = ~(~,P,r,s)EC~(~(I,P.LS) +T(x,p,r,.>Jo) 

is easily seen to coincide with Tef '  and 

is characterized by 

au au 
ax aP 

( ( x ,  p .  r, s ,  ax, Sp, Sr, as), rp') = - (ax - 8s) + -6r. 

The triple ( C l ,  K 1 ,  rp') generates the implicit differential equation (51) of example 8. 
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Example If. Let the space P = R4 of example 9 be given a symplectic structure with the 
symplectic form w,  defined by 
( ( X ,  Y. p .  4. f, 8. P, 4 )  A ( X ,  Y. p ,  4 , 6 X ,  6Y, sP, sq), W )  = pax + 46Y - i s p  - 86q. (10% 
Implicit differential equation (57) is a D i m  system (C, H) with 

c = I(& Y, P, 4 )  E p ;  x2 + YZ # 0 , x p  + yq = 0) (1 10) 
and 

H : C + R  

The extraction algorithm starts with 
CO = c 

It is easily seen that TTCo c TC". It follows that C is a first-class constraint. We have 
KO nTTC0 = TTCo and the equation 

Hence, 

The algorithm terminates with 
K' = {(x, y, p ,  q. a x ,  Sy, Sp, Sq) E TP; x Z  + Y' # 0, p = 0 , q  = 0 , ~ s ~  + Ysq = 01 

and (0' = 0. The triple (C', K', rp') generates the integrable differential equation (61) of 
example 9. 

c' = { ( x ,  y ,  p .  q )  € P;  x z  + YZ # 0. p = 0, q = 0). (120) 

(121) 
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